
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

A Building Block VLSI Design of an Information 

Decoder Using VHDL 

Denner Paganoti de Almeida  

Dept.of Electrical Engineering 

Federal University of Paraná  

Curitiba, Brazil 

dpaganoti7@gmail.com

 Jefferson Rodrigo Schuertz 

Dept.of Electrical Engineering 

Federal University of Paraná  

Curitiba, Brazil 

jeffersonschertz.eng@gmail.com

Sibilla Batista da Luz França 

Dept.of Electrical Engineering 

Federal University of Paraná  

Curitiba, Brazil   

sibilla@eletrica.ufpr.br

Abstract—Error correction codes allow the detection and 

correction of errors in a message that was possibly corrupted 

during the transmission or storage process. These codes add 

redundancy bits to the message before the transmission, 

enabling the decoder to recover the original one since the 

number of errors does not exceed the error-correcting capacity. 

Using a hardware architecture purposed for one of these 

decoders, based on information sets, a VLSI circuit, 

correspondent to one block of this decoder, was designed. The 

circuit that works as a reducing matrix that is the core of this 

decoder. It gives two output matrices, Gr and Gr0, that are used 

to generate candidate messages. It had been made the 

description of the circuit in VHDL and the synthesis, layout and 

subsequent verifications were performed through the Cadence’s 

tools, which resulted in an ASIC ready to be manufactured. The 

project was designed in the 130 nm technology. 

Keywords— Error correction code, decoder, information set, 

VDHL, VLSI. 

I. INTRODUCTION 

The error correction codes are used to improve reliability 
during the transmission and storage of data. Due to 
interference and noise in the channel and imperfections in the 
storage media, the original message could be corrupted, 
undermining the information. To recover the message, a series 
of bits, called parity bits (or redundancy bits), are added to the 
original message. The error correction codes, in general, are 
represented by the pair (n,k), where n is the number of bits of 
the codeword and k is the number of information bits, hence 
m=n-k is the minimal Hamming distance dmin, that represents 
the number of positions in which two codewords differ. The 
application of these codes is represented in figure 1 [1]. The 
message x is codified by an encoder where a series of parity 
bits are included. During the transmission process, the 
message is corrupted by the noisy channel, changing the 
original content. Due to the redundancy bits, the message can 
be restored by the decoder through a series of logical and 
arithmetical operations.  

 

Fig. 1. Typical usage of error-correcting codes [1]. 

Several algorithms for decoding were studied and 

mentioned in the literature in the past few years. One of them 

proposes an optimized hardware implementation, based on 

information sets, to decode block codes [2]. The use of 

information sets in the decoding process was used by many 

researchers [2-8] who applied this concept in cryptographic 

problems. Prange [3] was the first to theorize the use of 

information sets for decoding cyclic codes. McEliece [5] 

developed a cryptographic public key system. The 

repercussion of these researches influenced others works 

who, in applying this theory, proposed the use of suboptimal 

decoding algorithms [11], which, when implemented in 

hardware, present better performance in terms of asymptotic 

complexity, but with a slightly lower error probability to the 

method by maximum likelihood when n tends to infinity. An 

information set is defined as any set of k linearly independent 

columns in the generator matrix G. The algorithm uses the 

most reliable symbols from the received message to 

reconstruct the original message. The hardware architecture 

proposed in [2] is composed of five blocks, as shown in figure 

2. The decoding consists of the following steps: from a 

received message x, two vectors are generated. The first is r, 

corresponding to the abrupt decision, and the other one is s, 

corresponding to the reliability of symbols, sorted by 

decreasing order. Using this vector s, reduction operations are 

performed in the generator matrix G. These operations are 

based on the Gauss-Jordan elimination method and result in 

a matrix Gr. Another matrix Gr0 is also generated, consisting 

of ‘1’s in the pivot’s positions. From these matrices, some 

Fig. 2.   Decoder based on information sets [2]. 

 



candidate messages are obtained and afterward, some 

candidates codewords. The message considered more reliable 

is chosen comparing all the candidate’s codewords with the 

received message x, setting as the decoded the one who 

resembles it the most.  
In this paper is presented the VLSI design of Block 2, as 

demonstrated by the figure 3, that performs reduction 
operations in the generator matrix G, from the order 
established by the elements of the reliability vector s. This 
matrix G has dimensions (n, k), where n is the number of 
columns, k is the number of rows, and its format is G=[I|P], 
where I is an identity matrix and P is a parity matrix k × (n-
k). The reduction process applied in matrix G needs no more 
them n-d+1 clock cycles [2]. The Gr matrix is the matrix G 
reduced with k rows linearly independents and Gr0, with the 
same dimensions of G, and ‘1’ in the pivot positions. 
Basically, the main contribution of this work is to reproduce 
in VHDL the main block of the decoder presented in [2] and 
then perform the synthesis, simulation and layout in a circuit 
design tool integrated to the point of generating a Device 
ready to be produced by the industry, the previous works had 
arrived only in the reproduction of the algorithm in a 
programmable logic device. 

 

Fig. 3. Block diagram of the matrix scheduler. 

 After the study of the algorithm, the Block 2 was described 
in VHDL, targeting to design the VLSI layout circuit. Because 
of the high level of concentration and miniaturization of 
transistors in digital circuits, it is necessary to use a technique 
that describes all the steps in the design process of a chip [9-
10]. These steps, known as VLSI design flow, encompass 
every conception processes of an ASIC, since its definition of 
the functionality until its manufacturing in a foundry. The 
design flow starts by describing the circuit into a hardware 
language (HDL) and goes through stages of synthesis, layout 
generation, simulations, post-layout verification and 
manufacturing. In the synthesis step, the code is transformed 
in an RTL code, which has the same functionalities of the 
original code, but in the form of a netlist. From this netlist, a 
layout is generated. In this stage, the standard cells and the 
power buses are positioned on this layout. The I/O pins are 
inserted, and cells are routed. In the next stage, layout 
verification is made to validate if it is correct. After that, it is 
simulated and, if it works properly, it is sent to be 
manufactured in a foundry. Following this design technique, 
an ASIC, correspond in Block 2, has been projected in 130 nm 
technology. 

II. DEVELOPMENT, SIMULATION AND TOOLS 

CONFIGURATIONS 

In the VLSI design flow, the first step is to implement the 
code of the algorithm of the desired circuit using a hardware 
description language. Using VHDL, the algorithm of Block 2 
has been implemented, therefore it is possible to set it to work 
with matrices of any dimensions. This algorithm works as 
follows: from the vector s, a pivot is settled in the position 
defined by L × s(L), where L is the row index of the matrix G. 

At this position, the element is verified to be equals to ‘1’. If 
it is not ‘1’, the positions below the pivot in the column s(L) 
are verified to find an element like that and so, change the 
rows. If none of the positions bellow the pivot contains a ‘1’, 
it moves forward to the next column indicated by s(L), and the 
new pivot gets the position L × s(L + 1). If there is ‘1’ in the 
pivot position, an XOR operation is done between the pivots 
row and all those elements of s(k), ensuring at the end of it that 
s(L) is linearly independent. With every element at the row 
being ‘0’, except the pivot, the index L is incremented by one 
and Gr0 receives a ‘1’ in the same position as one of the pivots. 
This process should occur k times within n-d+1 clock cycles. 
By the end of this process, the result must be a matrix Gr0, 
that is a matrix made entirely of zeroes and receives ‘1’ in the 
pivot positions, and Gr, which is the matrix G with k linearly 
independent columns. In figure 4, this process is made in a 
matrix G(7, 4, 3) with the vector s = (6, 5, 7, 3, 2, 1, 4). The 
circuit was designed on these dimensions. It is possible to see 
that the reduction process occurred in columns 6, 5 e 7 of the 
matrix G, making them linearly independent. It is also 
possible to see that the reduction process failed in the column 
s(L) = 3, because a pivot equals to ‘1’ cannot be found, and so 
it moves forward the column s(L) = 2. By the end of 5 cycles 
of the clock, the process generated two matrices, Gr and Gr0, 
both with k linearly independent columns, finishing the 
process, as expected. 

 

Fig. 4. Block 2 algorithm [12]. 

The circuit of Block 2 described in VHDL, was simulated 
in the ModelSim tool. The results of the simulation are shown 
in Table I. It is possible to see that matrices Gr and Gr0 have 
the same results in figure 4. It is also possible to see which 
columns suffered the reduction process (columns 6, 5, 7, 2) 
and the pivots that were put in the correct positions in Gr0. In 
general, the Table I shows the gradual evolution of the k rows 
of matrices Gr and Gr0 along with the clock signal. Thus, it is 



possible to conclude that the circuit works in a proper way. 
After this conclusion, this code had been implemented in an 
FPGA, Xilinx Spartan 3E. The results with logic utilization 
are shown in Table II. 

TABLE I.  VHDL CODE SIMULATION RESULTS 

 1st clock 2nd clock 3rd clock 4th clock 5th clock 

 

 

Gr 

1000110 100011 1110010 1110010 0011010 

1100101 1100101 0110100 0110100 1011100 

1010001 1010001 1010001 1010001 1010001 

0001101 1101000 1101000 1101000 1101000 

 

 

Gr0 

0000010 0000010 0000010 0000010 0000010 

0000000 0000100 0000100 0000100 0000100 

0000000 0000000 0000001 0000001 0000001 

0000000 0000000 0000000 000000 0100000 

TABLE II.  DEVICE UTILIZATION (SPARTAN 3E) 

 
Number of used 

elements 
FPGA utilization 

Flip Flops 71 1% 

LUTs 1103 6% 

Slices 583 6% 

III. OBTAINED RESULTS 

After circuit verification, it has been possible to start the 
design process of the ASIC on the Cadence CAD tools. The 
first step was the synthesis of the circuit, made in the Cadence 
RTL Compiler. Here, the VHDL code was synthesized into an 
RTL circuit, represented in a form of a netlist. This netlist 
contains the standard cells which will be used in the circuit. 
Through these standard cells is possible to create the layout of 
the ASIC in the next steps of the VLSI design flow. The post-
synthesis summary is shown in Table III, it presents 
quantitative data regarding the consumption of logic units, the 
surface area occupied by the arrangement of IC cells and 
power consumption. The simulations results were the same as 
shown in Table I.  

TABLE III.  POST-SYNTHESIS SUMMARY 

Number of standard cells used  502 

The area occupied by the 

standard  
5938 µm² 

Total power 545 µW 

 

With the circuit working in a proper way, was possible to 
move forward to the layout generation. This step was made in 
the Cadence Encounter. Here, the power and I/O buses were 
positioned in the circuit, as well as the standard cells, defined 
in the netlist generated in the last step. These elements were 
routed between them and the characteristics of the resulting 
layout are shown in Table IV.  

TABLE IV.  POST LAYOUT SUMMARY 

I/O pins  79 

Total number of layers  16 

Number of tracks for routing 591 

The total area of circuit 

layout 
46873 µm² 

 

With the layout ready, it was possible to do the verification 
and post-layout simulations on the Cadence Virtuoso. First, a 

transient simulation of the circuit was made, comparing the 
behavior of the layout with the schematic. The result of that 
was identical, proving that the layout works properly, enabling 
to advance to the verification. The DRC (which verifies if the 
layout is designed in accordance with the technology rules) 
and the LVS (which verifies if every component the layout is 
present in the schematic, and vice-verse) were made. With this 
step concluded, it was possible to advance to parasites 
extraction and post-layout simulation. In this simulation was 
possible to confirm that the layout was working properly, with 
the results to Gr and Gr0 being the expected. Finally, a pad 
frame, a necessary structure to make the connections of the 
design of the IC to the I/O, was designed to accommodate the 
circuit. The encapsulation chosen was the DIP (dual in-line 
package) model 40, which has 38 pins which can be used to 
I/O. Because the number of outputs of Gr and Gr0 is greater 
than 38 pins, it was necessary to design a serial-parallel 
converter, to provide the outputs of both matrices, one row per 
clock cycle. This circuit was included to Block 2 in some pad 
frame.  

 The simulation results are shown in Table V. Analyzing 
the results given by Table V, it is possible to verify that each 
row of Gr e Gr0 is presented sequentially at each clock cycle. 
With every step of the VLSI design flow simulated and 
concluded, the final layout of the ASIC was achieved, as 
shown in figure 5. 

TABLE V.  DEVICE UTILIZATION (SPARTAN 3E) 

 1st clock 2nd clock 3rd clock 4th clock 

Gr 0011010 1011100 1010001 0001101 

Gr0 0000010 0000100 0000001 0100000 

 

 

Fig. 5. Final circuit layout . 

CONCLUSION 

Following the steps described by the VLSI design flow, it 
was possible, from a VHDL code, to do the whole design 
process evolved in the design of an ASIC, ready to be 
manufactured. This digital integrated circuit was simulated in 
every step of its design process (coding, synthesis and layout), 
to confirm its functionality. Through these simulations it could 
prove that it is working properly, is possible to use it in the 
system which it was originally conceived and in any other 
system that uses matrix reduction. 
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