
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Building Block VLSI Design of an Information

Decoder Using VHDL

Denner Paganoti de Almeida

Dept.of Electrical Engineering

Federal University of Paraná

Curitiba, Brazil

dpaganoti7@gmail.com

 Jefferson Rodrigo Schuertz

Dept.of Electrical Engineering

Federal University of Paraná

Curitiba, Brazil

jeffersonschertz.eng@gmail.com

Sibilla Batista da Luz França

Dept.of Electrical Engineering

Federal University of Paraná

Curitiba, Brazil

sibilla@eletrica.ufpr.br

Abstract—Error correction codes allow the detection and

correction of errors in a message that was possibly corrupted

during the transmission or storage process. These codes add

redundancy bits to the message before the transmission,

enabling the decoder to recover the original one since the

number of errors does not exceed the error-correcting capacity.

Using a hardware architecture purposed for one of these

decoders, based on information sets, a VLSI circuit,

correspondent to one block of this decoder, was designed. The

circuit that works as a reducing matrix that is the core of this

decoder. It gives two output matrices, Gr and Gr0, that are used

to generate candidate messages. It had been made the

description of the circuit in VHDL and the synthesis, layout and

subsequent verifications were performed through the Cadence’s

tools, which resulted in an ASIC ready to be manufactured. The

project was designed in the 130 nm technology.

Keywords— Error correction code, decoder, information set,

VDHL, VLSI.

I. INTRODUCTION

The error correction codes are used to improve reliability
during the transmission and storage of data. Due to
interference and noise in the channel and imperfections in the
storage media, the original message could be corrupted,
undermining the information. To recover the message, a series
of bits, called parity bits (or redundancy bits), are added to the
original message. The error correction codes, in general, are
represented by the pair (n,k), where n is the number of bits of
the codeword and k is the number of information bits, hence
m=n-k is the minimal Hamming distance dmin, that represents
the number of positions in which two codewords differ. The
application of these codes is represented in figure 1 [1]. The
message x is codified by an encoder where a series of parity
bits are included. During the transmission process, the
message is corrupted by the noisy channel, changing the
original content. Due to the redundancy bits, the message can
be restored by the decoder through a series of logical and
arithmetical operations.

Fig. 1. Typical usage of error-correcting codes [1].

Several algorithms for decoding were studied and

mentioned in the literature in the past few years. One of them

proposes an optimized hardware implementation, based on

information sets, to decode block codes [2]. The use of

information sets in the decoding process was used by many

researchers [2-8] who applied this concept in cryptographic

problems. Prange [3] was the first to theorize the use of

information sets for decoding cyclic codes. McEliece [5]

developed a cryptographic public key system. The

repercussion of these researches influenced others works

who, in applying this theory, proposed the use of suboptimal

decoding algorithms [11], which, when implemented in

hardware, present better performance in terms of asymptotic

complexity, but with a slightly lower error probability to the

method by maximum likelihood when n tends to infinity. An

information set is defined as any set of k linearly independent

columns in the generator matrix G. The algorithm uses the

most reliable symbols from the received message to

reconstruct the original message. The hardware architecture

proposed in [2] is composed of five blocks, as shown in figure

2. The decoding consists of the following steps: from a

received message x, two vectors are generated. The first is r,

corresponding to the abrupt decision, and the other one is s,

corresponding to the reliability of symbols, sorted by

decreasing order. Using this vector s, reduction operations are

performed in the generator matrix G. These operations are

based on the Gauss-Jordan elimination method and result in

a matrix Gr. Another matrix Gr0 is also generated, consisting

of ‘1’s in the pivot’s positions. From these matrices, some

Fig. 2. Decoder based on information sets [2].

candidate messages are obtained and afterward, some

candidates codewords. The message considered more reliable

is chosen comparing all the candidate’s codewords with the

received message x, setting as the decoded the one who

resembles it the most.
In this paper is presented the VLSI design of Block 2, as

demonstrated by the figure 3, that performs reduction
operations in the generator matrix G, from the order
established by the elements of the reliability vector s. This
matrix G has dimensions (n, k), where n is the number of
columns, k is the number of rows, and its format is G=[I|P],
where I is an identity matrix and P is a parity matrix k × (n-
k). The reduction process applied in matrix G needs no more
them n-d+1 clock cycles [2]. The Gr matrix is the matrix G
reduced with k rows linearly independents and Gr0, with the
same dimensions of G, and ‘1’ in the pivot positions.
Basically, the main contribution of this work is to reproduce
in VHDL the main block of the decoder presented in [2] and
then perform the synthesis, simulation and layout in a circuit
design tool integrated to the point of generating a Device
ready to be produced by the industry, the previous works had
arrived only in the reproduction of the algorithm in a
programmable logic device.

Fig. 3. Block diagram of the matrix scheduler.

 After the study of the algorithm, the Block 2 was described
in VHDL, targeting to design the VLSI layout circuit. Because
of the high level of concentration and miniaturization of
transistors in digital circuits, it is necessary to use a technique
that describes all the steps in the design process of a chip [9-
10]. These steps, known as VLSI design flow, encompass
every conception processes of an ASIC, since its definition of
the functionality until its manufacturing in a foundry. The
design flow starts by describing the circuit into a hardware
language (HDL) and goes through stages of synthesis, layout
generation, simulations, post-layout verification and
manufacturing. In the synthesis step, the code is transformed
in an RTL code, which has the same functionalities of the
original code, but in the form of a netlist. From this netlist, a
layout is generated. In this stage, the standard cells and the
power buses are positioned on this layout. The I/O pins are
inserted, and cells are routed. In the next stage, layout
verification is made to validate if it is correct. After that, it is
simulated and, if it works properly, it is sent to be
manufactured in a foundry. Following this design technique,
an ASIC, correspond in Block 2, has been projected in 130 nm
technology.

II. DEVELOPMENT, SIMULATION AND TOOLS

CONFIGURATIONS

In the VLSI design flow, the first step is to implement the
code of the algorithm of the desired circuit using a hardware
description language. Using VHDL, the algorithm of Block 2
has been implemented, therefore it is possible to set it to work
with matrices of any dimensions. This algorithm works as
follows: from the vector s, a pivot is settled in the position
defined by L × s(L), where L is the row index of the matrix G.

At this position, the element is verified to be equals to ‘1’. If
it is not ‘1’, the positions below the pivot in the column s(L)
are verified to find an element like that and so, change the
rows. If none of the positions bellow the pivot contains a ‘1’,
it moves forward to the next column indicated by s(L), and the
new pivot gets the position L × s(L + 1). If there is ‘1’ in the
pivot position, an XOR operation is done between the pivots
row and all those elements of s(k), ensuring at the end of it that
s(L) is linearly independent. With every element at the row
being ‘0’, except the pivot, the index L is incremented by one
and Gr0 receives a ‘1’ in the same position as one of the pivots.
This process should occur k times within n-d+1 clock cycles.
By the end of this process, the result must be a matrix Gr0,
that is a matrix made entirely of zeroes and receives ‘1’ in the
pivot positions, and Gr, which is the matrix G with k linearly
independent columns. In figure 4, this process is made in a
matrix G(7, 4, 3) with the vector s = (6, 5, 7, 3, 2, 1, 4). The
circuit was designed on these dimensions. It is possible to see
that the reduction process occurred in columns 6, 5 e 7 of the
matrix G, making them linearly independent. It is also
possible to see that the reduction process failed in the column
s(L) = 3, because a pivot equals to ‘1’ cannot be found, and so
it moves forward the column s(L) = 2. By the end of 5 cycles
of the clock, the process generated two matrices, Gr and Gr0,
both with k linearly independent columns, finishing the
process, as expected.

Fig. 4. Block 2 algorithm [12].

The circuit of Block 2 described in VHDL, was simulated
in the ModelSim tool. The results of the simulation are shown
in Table I. It is possible to see that matrices Gr and Gr0 have
the same results in figure 4. It is also possible to see which
columns suffered the reduction process (columns 6, 5, 7, 2)
and the pivots that were put in the correct positions in Gr0. In
general, the Table I shows the gradual evolution of the k rows
of matrices Gr and Gr0 along with the clock signal. Thus, it is

possible to conclude that the circuit works in a proper way.
After this conclusion, this code had been implemented in an
FPGA, Xilinx Spartan 3E. The results with logic utilization
are shown in Table II.

TABLE I. VHDL CODE SIMULATION RESULTS

 1st clock 2nd clock 3rd clock 4th clock 5th clock

Gr

1000110 100011 1110010 1110010 0011010

1100101 1100101 0110100 0110100 1011100

1010001 1010001 1010001 1010001 1010001

0001101 1101000 1101000 1101000 1101000

Gr0

0000010 0000010 0000010 0000010 0000010

0000000 0000100 0000100 0000100 0000100

0000000 0000000 0000001 0000001 0000001

0000000 0000000 0000000 000000 0100000

TABLE II. DEVICE UTILIZATION (SPARTAN 3E)

Number of used

elements
FPGA utilization

Flip Flops 71 1%

LUTs 1103 6%

Slices 583 6%

III. OBTAINED RESULTS

After circuit verification, it has been possible to start the
design process of the ASIC on the Cadence CAD tools. The
first step was the synthesis of the circuit, made in the Cadence
RTL Compiler. Here, the VHDL code was synthesized into an
RTL circuit, represented in a form of a netlist. This netlist
contains the standard cells which will be used in the circuit.
Through these standard cells is possible to create the layout of
the ASIC in the next steps of the VLSI design flow. The post-
synthesis summary is shown in Table III, it presents
quantitative data regarding the consumption of logic units, the
surface area occupied by the arrangement of IC cells and
power consumption. The simulations results were the same as
shown in Table I.

TABLE III. POST-SYNTHESIS SUMMARY

Number of standard cells used 502

The area occupied by the

standard
5938 µm²

Total power 545 µW

With the circuit working in a proper way, was possible to
move forward to the layout generation. This step was made in
the Cadence Encounter. Here, the power and I/O buses were
positioned in the circuit, as well as the standard cells, defined
in the netlist generated in the last step. These elements were
routed between them and the characteristics of the resulting
layout are shown in Table IV.

TABLE IV. POST LAYOUT SUMMARY

I/O pins 79

Total number of layers 16

Number of tracks for routing 591

The total area of circuit

layout
46873 µm²

With the layout ready, it was possible to do the verification
and post-layout simulations on the Cadence Virtuoso. First, a

transient simulation of the circuit was made, comparing the
behavior of the layout with the schematic. The result of that
was identical, proving that the layout works properly, enabling
to advance to the verification. The DRC (which verifies if the
layout is designed in accordance with the technology rules)
and the LVS (which verifies if every component the layout is
present in the schematic, and vice-verse) were made. With this
step concluded, it was possible to advance to parasites
extraction and post-layout simulation. In this simulation was
possible to confirm that the layout was working properly, with
the results to Gr and Gr0 being the expected. Finally, a pad
frame, a necessary structure to make the connections of the
design of the IC to the I/O, was designed to accommodate the
circuit. The encapsulation chosen was the DIP (dual in-line
package) model 40, which has 38 pins which can be used to
I/O. Because the number of outputs of Gr and Gr0 is greater
than 38 pins, it was necessary to design a serial-parallel
converter, to provide the outputs of both matrices, one row per
clock cycle. This circuit was included to Block 2 in some pad
frame.

 The simulation results are shown in Table V. Analyzing
the results given by Table V, it is possible to verify that each
row of Gr e Gr0 is presented sequentially at each clock cycle.
With every step of the VLSI design flow simulated and
concluded, the final layout of the ASIC was achieved, as
shown in figure 5.

TABLE V. DEVICE UTILIZATION (SPARTAN 3E)

 1st clock 2nd clock 3rd clock 4th clock

Gr 0011010 1011100 1010001 0001101

Gr0 0000010 0000100 0000001 0100000

Fig. 5. Final circuit layout .

CONCLUSION

Following the steps described by the VLSI design flow, it
was possible, from a VHDL code, to do the whole design
process evolved in the design of an ASIC, ready to be
manufactured. This digital integrated circuit was simulated in
every step of its design process (coding, synthesis and layout),
to confirm its functionality. Through these simulations it could
prove that it is working properly, is possible to use it in the
system which it was originally conceived and in any other
system that uses matrix reduction.

 REFERENCES

[1] V. A. Pedroni. Digital Electronics and Design with VHDL. Morgan

Kaufmann, 2010.

[2] A. Gortan, R. P. Jasinski, W. Godoy and V. A. Pedroni, “Achieving
near-MLD performance with soft information-set decoders
implemented in FPGAs,” 2010 IEEE Asia Pacific Conference on
Circuits and Systems, Kuala Lumpur, 2010, pp. 312-315.

[3] E. Prange, “The use of information sets in decoding cyclic codes,” IRE.
Transactions on lriformation Theory, Vol. IT-8, pp. 5-9, Sep. 1962.

[4] B. G. Dorsch, “A decoding algorithm for binary block codes andj-ary
output channels,” IEEE Transactions on Information Theory, Vol. IT-
20, pp. 391-394, May 1974.’

[5] R. J. McEliece, “A public-key cryptosystem based on algebrix coding
theory,” Jep Prop. Lab., California Inst, Technol., Pasadena, CA, Tech.
Rep., Jan 1978.

[6] G. Clark, J. Cain, Error-Correction Coding For Digital
Communication, Plenum Press, 1981.

[7] J. Coffey, R. Goodman, “The complexity of information set decoding,”
IEEE Transactions on Information Theory, Vol. IT-36, No. 5, pp. 1031-
1037, Set. 1990.

[8] M. Fossorier, S. Lin, “Soft-decision decoding of linear block codes
based on order statistics,” IEEE Transactions on Information Theory,
Vol. IT- 4I, No. 5, pp. 13791396, Sep. 1995.

[9] M. Fossorier, S. Lin, J. Snyders, “Reliability-based syndrome decoding
of linear block codes,” IEEE Transactions on Information Theory, Vol.
IT-44, No. I, pp. 388-398, Jan. 1998.

[10] E. Brunvand. Digital VLSI Chip Design with Cadence and Synopsys
CAD Tools. 1st ed. Addison Wesley Longman, 2009.

[11] G. G. Brante, D. N. Muniz, W. Godoy Jr“Information Set Based Soft-
Decoding Algotithm for Block Codes” IEEE Latin America
Transactions, vol. 9, no. 4. P. 463-469 July 2011.

[12] A. Sengupta, “Design Flow of a Digital IC: The role of digital IC\/SOC
design in CE products,” in IEEE Consumer Electronics Magazine, vol.
5, no. 2, pp. 58-62, April 2016.

[13] R. P.Jasinski, W. Godoy, A. Gortaan, S. B. L. França, V. A. Pedoni,
“Efficient Hardware Implementation of Advanced Soft Information-
Set Decoders in FPGAs,” WSEAS Transactions on Communications,
v. 12, p. 334-351, 2013.

